ezmsg.learn.process.linear_regressor#
Classes
- class AdaptiveLinearRegressorUnit(*args, settings=None, **kwargs)[source]#
Bases:
BaseAdaptiveTransformerUnit[LinearRegressorSettings,AxisArray,AxisArray,LinearRegressorTransformer]- Parameters:
settings (Settings | None)
- SETTINGS#
alias of
LinearRegressorSettings
- class LinearRegressorSettings(model_type=StaticLinearRegressor.LINEAR, settings_path=None, model_kwargs=<factory>)[source]#
Bases:
Settings- Parameters:
model_type (StaticLinearRegressor)
settings_path (str | None)
model_kwargs (dict)
- model_type: StaticLinearRegressor = 'linear'#
- __init__(model_type=StaticLinearRegressor.LINEAR, settings_path=None, model_kwargs=<factory>)#
- Parameters:
model_type (StaticLinearRegressor)
settings_path (str | None)
model_kwargs (dict)
- Return type:
None
- class LinearRegressorTransformer(*args, **kwargs)[source]#
Bases:
BaseAdaptiveTransformer[LinearRegressorSettings,AxisArray,AxisArray,LinearRegressorState]Linear regressor.
Note: partial_fit is not ‘partial’. It fully resets the model using the entirety of the SampleMessage provided. If you require adaptive fitting, try using the adaptive_linear_regressor module.
- partial_fit(message)[source]#
- Return type:
- Parameters:
message (SampleMessage)
- class LinearRegressorSettings(model_type=StaticLinearRegressor.LINEAR, settings_path=None, model_kwargs=<factory>)[source]#
Bases:
Settings- Parameters:
model_type (StaticLinearRegressor)
settings_path (str | None)
model_kwargs (dict)
- model_type: StaticLinearRegressor = 'linear'#
- __init__(model_type=StaticLinearRegressor.LINEAR, settings_path=None, model_kwargs=<factory>)#
- Parameters:
model_type (StaticLinearRegressor)
settings_path (str | None)
model_kwargs (dict)
- Return type:
None
- class LinearRegressorTransformer(*args, **kwargs)[source]#
Bases:
BaseAdaptiveTransformer[LinearRegressorSettings,AxisArray,AxisArray,LinearRegressorState]Linear regressor.
Note: partial_fit is not ‘partial’. It fully resets the model using the entirety of the SampleMessage provided. If you require adaptive fitting, try using the adaptive_linear_regressor module.
- partial_fit(message)[source]#
- Return type:
- Parameters:
message (SampleMessage)
- class AdaptiveLinearRegressorUnit(*args, settings=None, **kwargs)[source]#
Bases:
BaseAdaptiveTransformerUnit[LinearRegressorSettings,AxisArray,AxisArray,LinearRegressorTransformer]- Parameters:
settings (Settings | None)
- SETTINGS#
alias of
LinearRegressorSettings