ezmsg.learn.dim_reduce.incremental_decomp#

Classes

class IncrementalDecompSettings(axis='!time', n_components=2, update_interval=0.0, method='pca', batch_size=None, whiten=False, init='random', beta_loss='frobenius', tol=0.001, alpha_W=0.0, alpha_H='same', l1_ratio=0.0, forget_factor=0.7)[source]#

Bases: Settings

Parameters:
axis: str = '!time'#
n_components: int = 2#
update_interval: float = 0.0#
method: str = 'pca'#
batch_size: Optional[int] = None#
whiten: bool = False#
init: str = 'random'#
beta_loss: str = 'frobenius'#
tol: float = 0.001#
alpha_W: float = 0.0#
alpha_H: Union[float, str] = 'same'#
l1_ratio: float = 0.0#
forget_factor: float = 0.7#
__init__(axis='!time', n_components=2, update_interval=0.0, method='pca', batch_size=None, whiten=False, init='random', beta_loss='frobenius', tol=0.001, alpha_W=0.0, alpha_H='same', l1_ratio=0.0, forget_factor=0.7)#
Parameters:
Return type:

None

class IncrementalDecompTransformer(*args, **kwargs)[source]#

Bases: CompositeProcessor[IncrementalDecompSettings, AxisArray, AxisArray]

Automates usage of IncrementalPCATransformer and MiniBatchNMFTransformer by using a WindowTransformer to extract training samples then calls partial_fit on the decomposition transformer.

stateful_op(state, message)[source]#
Return type:

tuple[dict[str, tuple[Any, int]], AxisArray]

Parameters:
class IncrementalDecompUnit(*args, settings=None, **kwargs)[source]#

Bases: BaseTransformerUnit[IncrementalDecompSettings, AxisArray, AxisArray, IncrementalDecompTransformer]

Parameters:

settings (Settings | None)

SETTINGS#

alias of IncrementalDecompSettings

class IncrementalDecompSettings(axis='!time', n_components=2, update_interval=0.0, method='pca', batch_size=None, whiten=False, init='random', beta_loss='frobenius', tol=0.001, alpha_W=0.0, alpha_H='same', l1_ratio=0.0, forget_factor=0.7)[source]#

Bases: Settings

Parameters:
axis: str = '!time'#
n_components: int = 2#
update_interval: float = 0.0#
method: str = 'pca'#
batch_size: Optional[int] = None#
whiten: bool = False#
init: str = 'random'#
beta_loss: str = 'frobenius'#
tol: float = 0.001#
alpha_W: float = 0.0#
alpha_H: Union[float, str] = 'same'#
l1_ratio: float = 0.0#
forget_factor: float = 0.7#
__init__(axis='!time', n_components=2, update_interval=0.0, method='pca', batch_size=None, whiten=False, init='random', beta_loss='frobenius', tol=0.001, alpha_W=0.0, alpha_H='same', l1_ratio=0.0, forget_factor=0.7)#
Parameters:
Return type:

None

class IncrementalDecompTransformer(*args, **kwargs)[source]#

Bases: CompositeProcessor[IncrementalDecompSettings, AxisArray, AxisArray]

Automates usage of IncrementalPCATransformer and MiniBatchNMFTransformer by using a WindowTransformer to extract training samples then calls partial_fit on the decomposition transformer.

stateful_op(state, message)[source]#
Return type:

tuple[dict[str, tuple[Any, int]], AxisArray]

Parameters:
class IncrementalDecompUnit(*args, settings=None, **kwargs)[source]#

Bases: BaseTransformerUnit[IncrementalDecompSettings, AxisArray, AxisArray, IncrementalDecompTransformer]

Parameters:

settings (Settings | None)

SETTINGS#

alias of IncrementalDecompSettings